伟德官网

ENGLISH| betvicror伟德app 下载| 书记院长信箱|
当前位置: 首页 >> 教师简介 >> 正文

教师简介

高向东
来源:伟德官网 时间:2016-12-26 12:02:32 阅读量:

    


职称职务:教授、博导
学科专业:微生物学
研究方向:酵母出芽与菌丝形成的调控
实验室位置:生科院大楼6130-6131室
联系电话:15327283490

Email: xdgao@whu.edu.cn

 

学习经历
1987-1992  中国科学技术大学生物系,学士
1992-1995  中国科学技术大学生物系,硕士
1995-1998  复旦大学遗传学研究所,博士

主要工作经历与任职情况:
1998-1999  美国佛蒙特大学(University of Vermont)医学院,博士后
1999-2006  美国宾夕法尼亚大学(University of Pennsylvania)医学院,博士后/研究助理
2006-至今  伟德官网,教授
2015-      微生物学系系主任

主要社会兼职:
湖北省侨联青年委员会委员 (2012-)

主要研究领域及兴趣:
1. 酿酒酵母出芽过程的调控
  酵母是单细胞真核微生物,绝大多数种类通过出芽进行繁殖。出芽过程是一种极性生长过程,
涉及到细胞骨架的组织、囊泡运输和细胞壁的重塑,我们对酵母出芽过程的调控机制很感兴趣。酿酒酵母Saccharomyces cerevisiae是研究真核生物多种细胞学过程分子调控机制的重要模式生物之一,其所含有的Rho GTP酶(Ras家族小GTP结合蛋白)在真核生物的细胞形态建立、细胞运动和细胞质分裂等过程中发挥着重要作用。酿酒酵母含有6个Rho GTP酶,分别是Cdc42、Rho1-Rho5,我们目前的研究工作集中于Rho GTP酶在酵母出芽过程中的功能与调控机制。我们已开展了对Cdc42、Rho3和Rho4三个Rho GTP酶的研究,通过遗传学、细胞学和生物化学手段分离和鉴定与这些Rho GTP酶有相互作用的新基因或蛋白质,揭示这些蛋白质调控Rho GTP酶的分子机制,以增进对酵母出芽过程调控机制的认识。
2.解脂耶氏酵母菌丝形成的调控
  一些种类的真菌在氮源缺乏、中性pH或高温培养条件下能够从椭圆形的酵母形态转换成为多细胞的菌丝或假菌丝,被称为二型性转换(dimorphic transition)。二型性转换是一种细胞分化过程,涉及到多个信号传递通路的激活,以及多种基因的表达与关闭,它还是一些致病性真菌的毒力因子之一,我们对调控这一形态转换的分子机制很感兴趣。酿酒酵母和白色念珠菌是两种最主要的用于研究真菌二型性转换的实验材料,考虑到真菌存在多样性,有些真菌可能会具有不同于酿酒酵母或白色念珠菌的二型性转换调控机制,揭示这些调控机制可以丰富人们对真菌二型性转换的认识。解脂耶氏酵母Yarrowia lipolytica是一种在进化上与酿酒酵母和白色念珠菌亲缘关系较远而与丝状真菌更为接近的酵母种类,对人无致病性,相较于偏爱葡萄糖的酿酒酵母,解脂耶氏酵母具有强大的降解烷烃、脂肪酸和油脂的能力,在发酵工业中具有良好的应用前景。解脂耶氏酵母在葡萄糖等碳源存在或中性pH值时能够从椭圆形的酵母形态转变为菌丝形态,我们目前正在通过遗传学和细胞学手段分离与鉴定调控从酵母型向菌丝型转换的基因,探索其发挥功能的分子机制,以增进对真菌二型性转换调控机制的认识


承担课程(本科生、研究生):
1. 遗传学(全英文教学):国际班和弘毅班专业必修课,54学时
2. 微生物遗传学:本科生专业选修课,36学时
3. 高级微生物学:研究生专业必修课,54学时

主持课题项目:
1. 国家自然科学基金面上项目:Ras信号传递途径下游效应分子Mhy1与YlRim15在解脂耶氏酵母二型性转换中的功能与调控机制研究(31570076),2016-2019
2. 国家自然科学基金面上项目:酿酒酵母极性生长关键调控分子Rho3的新调控因子、下游效应分子及功能的鉴定(31370124),2014-2017
3. 国家自然科学基金面上项目:酿酒酵母 Rho GTP酶在细胞极性建立过程中调控机制的研究(30871347),2009-2011
4. 国家自然科学基金面上项目:酿酒酵母Bud3p对septin细胞骨架调节机制的研究(30770017),2008-2010

发表的论文(*通讯作者):
1. Nie W-C, He F, Yuan S-M, Jia Z-W, Wang R-R, Gao X-D* (2017) Roles of an N-terminal coiled-coil-containing domain in the localization and function of Bem3, a Rho GTPase-activating protein in budding yeast. Fungal Genet. Biol. 99: 40-51.

2. Liang S-H, Wu H, Wang R-R, Wang Q, Shu T, Gao X-D* (2017) The TORC1-Sch9-Rim15 signaling pathway represses yeast-to-hypha transition in response to glycerol availability in the oleaginous yeast Yarrowia lipolytica. Mol. Microbiol. 104(4):553-567.

3. Yuan S-M, Nie W-C, He F, Jia Z-W, Gao X-D* (2016) Kin2, the budding yeast ortholog of animal MARK/PAR-1 kinases, localizes to the sites of polarized growth and may regulate septin organization and the cell wall. PLoS ONE 11(4): e0153992.

4. Wu H, Guo J, Zhou Y-T, Gao X-D* (2015) The anillin-related region of Bud4 is the major functional determinant for Bud4’s function in septin organization during bud growth and axial bud-site selection in budding yeast. Eukaryot. Cell 14(3): 241-251.

5. He F, Nie W-C, Tong Z, Yuan S-M, Gong T, Liao Y, Bi E, Gao X-D* (2015) The GTPase-activating protein Rga1 interacts with Rho3 GTPase and may regulate its function in polarized growth in budding yeast. PLoS ONE 10(4): e0123326.

6. Li Y-Q, Li M, Zhao X-F, Gao X-D* (2014) A role for the Rap GTPase YlRsr1 in cellular morphogenesis and the involvement of YlRsr1 and the Ras GTPase YlRas2 in bud-site selection in the dimorphic yeast Yarrowia lipolytica. Eukaryot. Cell 13(5): 580-590.

7. Li M, Li Y-Q, Zhao X-F, Gao X-D* (2014) Roles of the three Ras proteins in the regulation of dimorphic transition in the yeast Yarrowia lipolytica. FEMS Yeast Res. 14(3): 451-463.

8. Gong T, Liao Y, He F, Yang Y, Yang D-D, Chen X-D, Gao X-D* (2013) Control of polarized growth by the Rho family GTPase Rho4 in budding yeast: Requirement of the N-terminal extension of Rho4 and regulation by the Rho GTPase-activating protein Bem2. Eukaryot. Cell 12(2): 368-377.

9. Liao Y, He F, Gong T, Bi E, Gao X-D* (2013) Msb1 interacts with Cdc42, Boi1, and Boi2 and may coordinate Cdc42 and Rho1 functions during early stage of bud development in budding yeast. PLoS One 8:e66321.

10. Zhao XF, Li M, Li YQ, Chen XD, Gao X-D* (2013) The TEA/ATTS transcription factor YlTec1p represses the yeast-to-hypha transition in the dimorphic yeast Yarrowia lipolytica. FEMS Yeast Res. 13:50-61.

11. Tang Y, Gao X-D, Wang Y, Yuan BF, Feng YQ (2012) Widespread existence of cytosine methylation in yeast DNA measured by gas chromatography/mass spectrometry. Anal. Chem. 84:7249-55.

12. Guo J, Gong T, Gao X-D* (2011) Identification of an amphipathic helix important for the formation of ectopic septin spirals and axial budding in yeast axial landmark protein Bud3p. PLoS One 6:e16744.

13. Tong Z, Gao X-D, Howell AS, Bose I, Lew DJ, Bi E (2007) Adjacent positioning of cellular structures enabled by a Cdc42 GTPase-activating protein-mediated zone of inhibition. J. Cell Biol. 179:1375-1384.

14. Gao X-D, Sperber LM, Kane SA, Tong Z, Tong AHY, Boone C, Bi E (2007) Sequential and distinct roles of the cadherin domain-containing protein Axl2p in cell polarization in yeast cell cycle. Mol. Biol. Cell 18:2542-2560.

15. Tcheperegine SE, Gao X-D, Bi E (2005) Regulation of cell polarity by interactions of Msb3 and Msb4 with Cdc42 and polarisome components. Mol. Cell. Biol. 25:8567-8580.

16. Gao X-D, Caviston JP, Tcheperegine SE, Bi E (2004) Pxl1p, a paxillin-like protein in Saccharomyces cerevisiae, may coordinate Cdc42p and Rho1p functions during polarized growth. Mol. Biol. Cell 15:3977-3985.

17. Grimme SJ, Gao X-D, Martin PS, Tu K, Tcheperegine SE, Corrado K, Farewell AE, Orlean P, Bi E (2004) Deficiencies in the endoplasmic reticulum (ER)-membrane protein Gab1p perturb transfer of glycosylphosphatidylinositol to proteins and cause perinuclear ER-associated actin bar formation. Mol. Biol. Cell 15:2758-2770.

18. Gao X-D, Albert S, Tcheperegine SE, Burd CG, Gallwitz D, Bi E (2003) The GAP activity of Msb3p and Msb4p for the Rab GTPase Sec4p is required for efficient exocytosis and actin organization. J. Cell Biol. 162:635-646.


             

伟德官网-betvicror伟德app 下载
Baidu
sogou